Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
Diabetes ; 69:N.PAG-N.PAG, 2020.
Article in English | Academic Search Complete | ID: covidwho-1456239

ABSTRACT

Background and Aims: Postprandial thermogenesis is thought to be important for the control of metabolism. This process could be reflected by minute changes in body temperature after glucose load. In this study, we measured body temperature before and its change during a glucose challenge and investigated the relationships with anthropometric and glycemic traits. Methods: We prospectively studied 383 volunteers (251 females, 132 males) with a mean age of 46.6 (SD ± 16) years and a BMI of 27.9 kg/m2 (SD ± 5.9). All participants underwent a 75 g oral glucose tolerance test (OGTT) and repeated bilateral measurements of intra-auricular temperature at time points 0, 30 and 120 minutes during the OGTT using a tympanic thermometer (Covidien Genius 2). Results: Baseline temperature was 0.17°C lower in males compared to females (p = 0.001) and inversely associated with age (p < 0.0001). During the OGTT, there was a significant increase in body temperature (0.18 ± 0.34°C). This response was present in females and males. BMI was negatively associated with the increase of temperature during the OGTT (p = 0.0147). Participants with higher BMI displayed higher fasting temperatures, but less increase of temperature during the OGTT. Body temperature was not associated with glycemia, insulin sensitivity or insulin secretion, neither in females nor males. Conclusions: There is a robust increase in body temperature during a glucose load that can be captured by intra-auricular temperature measurements. We did not detect any associations of the body temperature with glucose metabolism, arguing against a major contribution of the variability of body temperature in the pathogenesis of diabetes. However, the rise in temperature in response to oral glucose is reduced in obesity and might therefore be involved in body weight regulation. Disclosure: A. Vosseler: None. L. Fritsche: None. J. Hummel: None. C. Dannecker: None. N. Stefan: None. A.L. Birkenfeld: None. H. Haering: None. A. Fritsche: None. R. Wagner: Advisory Panel;Self;Novo Nordisk A/S. Speaker's Bureau;Self;Novo Nordisk A/S. Other Relationship;Self;Eli Lilly and Company. M. Heni: Research Support;Self;Boehringer Ingelheim Pharmaceuticals, Inc., Sanofi. Speaker's Bureau;Self;Novo Nordisk A/S. Funding: German Federal Ministry of Education and Research (01GI0925) [ABSTRACT FROM AUTHOR] Copyright of Diabetes is the property of American Diabetes Association and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

SELECTION OF CITATIONS
SEARCH DETAIL